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A well-known scheme of topological analysis [1] is extended to the case of three or more integrals which are quadratic functions 
of the velocity. The bifimeation set is parametrized by Lagrange multipliers, which corresponds to a transition to the dual surface. 
As an example, the motion of a rigid body in a field with quadratic potential is considered. © 1997 Elsevier Science Ltd. All 
fights reser~ed. 

1. Let us assume that a dynamical system on the tangent bundle TM of an n-dimensional manifold M 
with Riemannian :metric (-, -) has m integrals 

F/,.(v)--(v,r'iv)+ W/(x); v e  T~M • (1.1) 

where v is the vek~ity, T ~ / i s  the tangent fibre at x e M, F/are  the self-adjoint linear fibre operators, 
and F1 is the idenllity operator. Consider the integral map F: TM --> R 'n, F(v) - f = (fl . . . .  , fm),)~ -- 
Fi(v), whose range we denote by f~, and the map W: M -> R m defined similarly by the functions W/(x) 
and giving the values of  F at zero velocity, the set of which we denote by f~0. 

We adopt the notation Xffor the convolution of the vectorfwi th  the covector ~. = (~.1 . . . . .  Xm), and 
the notation XF, ~.F, ~.W for the sheaves Fi, Fi, Wi with coefficients hi. 

The object of  topological analysis [1] is to describe the integral surfaces If  = F-l(]) C TM and 
bifurcation set Z C R m, which consists of points f corresponding to modifications (surgeries)I  b i.e. it 
includes the eritic~d values of the integral map. The critical points of  the latter are determined by the 
dependency condition of  the differentials dFi, whieh may be represented as dLF = 0, where hi are the 
Lagrange multipliers. This condition is invariant [2], that is, the critical points of  the sheaf LF form 
complete motions, which we call steady motions. We will use the quantifies Z to parametrize the families 
of  steady motions and the bifurcation surface. 

As the partial gradient of the function 7~" along the fibre T ~ / e q u a l s  2ZFv, the critical points v of  
the map F corresponding to a specific ~. lie in the kernel of the operator ZF. Let P(~,x)  = det M', P'(Z, 
x) = ~P/~Z1, D(T, ;t, x) = det(M" - ?E), where ~(~, x) are the roots of the equation D = 0. Since z r  - 
T E = (Z1 - T) E + . . .  hinFm, it follows that 3D/a'llr~o = -P'(L, x). If P = 0, one of  the roots, say T1, must 
vanish, the kernel of LF is not zero, and by Vi~ta's theorem P '  --- T2T3 . . . .  Tn. If P = 0 and P'  ~e 0, the 
multiplicity of  the zero root and the dimensions of the kernel of ZF are greater than one. Then 
the rank of the matrix ZF is less than n - 1, that is, all the cofactors P# of  its elements T# vanish, so that 
dP  = Y./'.#dT# = 0. Thus, when P'  = P = 0, the differential dPvanishes, and so does the partial differential 
d~P. 

The functions P and P" define parametrizatious by 2~ of families of functions Px(x) and P~.(x) on M. 
It follows from the foregoing that, given Z, the points x over which the kernel of ZF does not vanish 
form a surface Zx = {x: P~.(x) = 0), at whose regular points (we shall assume that these are points of 
general position on Zx) P'x(x) ~e 0, so that the kernel of  ZF over them is one-dimensional. It can be 
shown that the surface Zx and function ZW are invariant with respect to the vectors of the kernel LF. 
(For natural systems this follows from the equations considered in [3].) 

Proposition 1. The vectors v e ker ZF over regular points of the surface Zx are critical points of the 
integral map provided that 

clZW + OdPx = 0; I v 12 -- OP'~ (1.2) 
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Proof. Suppose that k is fixed, Px = 0 ,and dPx ~ 0 at the point x. and the vector v. lies in the kernel 
of ;~F overx.. Then D = 0 and OD/OT = -Px  ~ 0 fo r , /=  0,x = x.. Applying the implicit-function theorem 
in the neighbourhood fix., we obtain a smooth function ,/l(X)--a simple eigenvalue of the operator LF, 
,/l(x.) = 0. In that case, in the same neighbourhood a smooth field v*(x) of eigenvectors belonging to 
,/1, v(x.) = v., exists. Consider the functions g(x) = 7~F(v(x)) = ,/l(x)l v(x)l 2 + ZW(x) and G(v) = LF(v 
+ v(x)), v ~ TM. We have dkF[~=~) = dGIv=o. The partial differentials along T~/appearing as summands 
on both sides of this equality vanish at x = x., since kFv. = 0. The remaining term on the right-hand 
side is the differential of the function g(x) = G~,_-o. Therefore, v. is a critical vector provided that dg 
= 0 atx..,  which, since ,/l(x.) = 0, is equivalent to I V-/l(X). I~d,/~ + d~.W = 0. On the other hand, PT. = 
,/l(x)p(x), where p ~ -/2-/3. ~. ,/~, and therefore, if'/1 = 0, we have dPT = pd,/t and P~ = p, which implies 
(1.2) for - O  = p-  (x,)l v. IL 

The first condition of (1.2) defines the critical points of the restriction LWIZx and the values of 0 at 
those points. Denote the set of such points at which OP~ I> 0 byXx. IfXx is connected, then kWtakes 
a constant value on it, which we denote by ~F(L) 

q'(~.) = ~.W(x), x ~ Xx (1.3) 

If Xx is not connected, W may have a different value on each component. 
By Proposition 1, the set Xx is rifled by the trajectories of steady motions at a velocity --.vx: vx ~ ker 

~,F, I vx I = ~/OP~. By (1.3), the value of the integral EF on these motions is W(2L). 
The critical points of the map W are defined by the condition dT~W = 0. By analogy with 

Proposition 1, the zero vectors over these points are critical points of the map F. Thus, every critical 
point of the function ~,W (other than equilibrium points) is the initial point of a steady motion over 
Zx with zero initial velocity; by continuity, this point must lie on Z~. and the value of ~,W there 
equals W(7~). The critical values of W form a subset of the critical values of F, and this subset contains 
~ .  

2. Let us assume that the set Xx, together with the function O are smoothly deformed as ~, varies in 
some domain A. Then W(~) is a smooth function in A and the vectors _+vx also vary smoothly, running 
through a subset of critical points of the integral map; denote this subset by S. 

Proposition 2. The values f = F(vx) of the integral map on S are described by the equation 

3"= O~F/3~, (2.1) 

Proof. By assumption, any vector in S may be embedded in a smooth field v(2L) = vT.(x(~,)), x(~,) 
Xx, 2L ~ A. L e t f  = F(v(~)), then Xdf = dXF = 0, and, since LF(v(~,)) = kW(x(~)), it follows from (1.3) 
that Xf = W, whence, after differentiation, since Xdf = 0, we obtain (2.1). 

Since W(~,) is a homogeneous function, it follows from (2.1) that Xf = ~I' and Zdf = 0, that is, ~ is the 
normal and IIx = ~. Xf = W} is the tangent plane to F(S) at the point (2.1). The tangent set {1-I~, ~, 
A} is identified with the surface {kl: -. • : X,n : - W(~,)) in the adjoint projective space, which is called 
the space dual to F(S) [4]; accordingly, the parametrization of the section F(S) C I: by formula (2.1) 
is called a dual parametrization and the domain A is called a dual bifurcation domain (DBD). 

For all ~, in a given DBD, the signature of the matrix ~,F over the regular points of the connected 
part of Xx is the same, since -/2. • • '/n = P' ~ 0. Those DBDs for which ~,F is positive-semidefinite or 
negative-semidefmite over x ~ Xx will be called domains of definiteness and denoted by A ÷ or A-, 
respectively. 

We will limit ourselves to the case in which Z is exhausted by the critical values of the integrals (for 
example, if M is a compact set) and all its smooth parts have the form F(S) for sets S as described above. 
Then the map (2.1), denoted henceforth byf(~.), defines a dual parametrization of the bifurcation surface. 

Remark. For every point f, the normals to the planes IIx containing it form a surface Of = {~: Xf = W(~,)} in 
certain DBDs. The envelope Kf of these planes is a cone with apexf and generators parallel to grad(A/- W(2L)) = 
f-f(Z),  k ¢ O h that is, normal to Of, so that Kf and Of are mutually dual cones. Expressing (2.1) as grad(7~f- q'(7~)) 
= 0, we observe that the modifications O/occur a t f¢  X, that is, in the cases considered here they correspond to 
bifurcations If. 

3. Let us consider the map p: If--~ M defined as the composition of the embedding If--~ TM and the 
bundle projection TM --¢ M. The image p(If) = Mf is the domain of possible motion (DPM) for the 
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given values of the integrals. The set of critical values of p is known as the generalized boundary of the 
DPM [5]; it includes the boundary, OMf of the DPM and is denoted by OM/,. Over points x ~ k$/¢ one 
has modifications of the section p-~(x) = l fN T~'l----sets of possible velocities. 

Let D.x and ~ be the image of aset of critical values of the restriction F [ TxM. If v is a critical point 
of the map p, then necessarily M'v = 0, i.e. it is also critical for F I TrM. Thus, the conditions x e Mf 
andx ~ ~d4f a re  equivalent to the conditionsf ~ D.x a n d f e  ~'lx. The map F ] TxM is homogeneous up 
to the term W(x), and therefore the sets O~ and kO.x are conical with apexf  = W(x). 

The cone ~ which contains the boundary OO.~, is described by a dual parametrization with correction 
for homogeneity. The values of X form a cone X~ = (7~ : P (~  x) = 0), the role of A is played by its 
regular domains, defined by the condition P'(~, x) # 0. 

Proposition 3. The values of f ~ 5D~ corresponding to regular points ~. ~ X~ are described by the 
conditions 

f -  W(x) = gOPlO~,, gOP/~.~ >~ O, P = 0 (3.1) 

with an undetermined factor g. 
The proof is analogous to that of Proposition 2, allowing for the fact that the function ~F(~) = ~W(x) 

is linear and the differential d~ must satisfy the condition dP = 0. The inequality follows from the fact 
that F1 is positive. 

Let A+~ and A~ be the closures of the domains of k values for which the operator kF is positive-definite 
and negative-defirdte, respectively, over x. Denote their boundaries, which are contained in Xx, by X~x 
and X~, respectively; in both of them, kF is semidefinite. Clearly, the pairs A~ andX~ are symmetrical 
about zero. 

Proceeding as at the end of Section 2, we conclude that the planes lIxx = {f." 2~f = 2~W(x)} for 2~ ~ Xs 
are tangent to ~it2~. If ~ e A--, they are support planes for D~ and if k e X~, they are tangent to 0O~ 
Indeed, since MT(~,) - ~(W(x) = (V, 7if'v), it follows that --.~F ~> 0 if and only if __.(Ttf- ~W(x)) >I 0 for 
all f = F(v), v ~ T~M, with equality for f e OD~, k e X~, ~Fv = 0. Thus, the cone A~ is dual to D. x 
[6], and hence A~ is convex. 

In what follows we will consider the case in which all the sets D.x are convex. This is the ease, for 
example, when m = 3. 

To prove this, one shows that the section of D.x by a plane {fl = const} is convex. Any straight line 
in the section may be reduced, by a linear substitution off2 and f3, to the form {fl = const, f2 = const}. 
Its pre-image in T~M--the intersection of two quadratic surfaces--is the union of a pair of couneeted 
components symmetrical about zero. Hence the set of values f3 = Fa(-v) on the pre-image is a single 
interval, as required. 

Proposition 4. The domains of possible motion have the form 

Mr= Ix: V~.~ X~, + ( V -  ~.W(x)) ~>0} (3.2) 

Proof. By convexity, D,x is dual to A+x [6], and therefore the condition that k ~ X x = ~A x should imply 
+-.(Lf- XW(x)) ~ 0 is necessary and sufficient f o r f ~  D.x, that is, forx e Mf. 

The boundary of t2 is obviously a subset of Z. 

Proposition 5. The smooth parts of 0f~ are the images of the domains of definiteness under a dual 
parametrization, in such a way that the normals L in A'~ are inward and those in A- outward with respect 
to ~.  

Proof. Let f(~,) e ~f~. Since II = UD,~, it follows that ~f~ is tangent to Oflx at the point f(~,) for some 
x ~ Xx. Then X is normal to DO.x, and the tangent plane II~ is a support plane by convexity; hence X 
X~x and so 2~ ~ A -+. It follows from (2.1) and (1.3) that Xf(~) = ~W(x), and therefore, i f f  = f(Z) + df, 
then 7~/f = kf-kW(x), and if _+2~df > 0, the point flies on the same side of IIx~ as D~, that is, the normal 
--.k is inward for fl~ and [1. 

4. Let us consider the motion of a rigid body with a fixed point in a field with a quadratic potential 
[7]. Let Q = (0~) be the matrix of the transformation from principal axes of inertia to principal axes 
of potential, and let I = diag(li) and A = diag(ai) be the principal matrices of inertia and potential. 
Assume that 11 > /2  > 13, al > a2 > a3 > 0. Let Ji =//+1//-1, bi = ai+lai-1, i(mod3). Define matrices 
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U = (u#) = QAQ q,  J = diag(Ji), B = diag(bi), V = (v#) = QBQ -t. Three integrals---linear combinations 
of those described in [7]--have the form (1.1), where v = ¢o is the angular velocity, the metric is defined 
by the inertia tensor, and the matrices of operators in its principal axes and the functions Wi(Q) are as 
follows: 

F 2 = !, F3 = UI; Wt = trUI, W 2 =-trUJ,  W3 = trVJ 

Let us number the permutations o of the numbers 1, 2, 3 as follows: o0 is the ideal permutation, 
ol  = (123) is a cyclic permutation, o2 = o1-1, o3,4.s are transpositions, and (ij) = oi+ j .  Define vectors 
in the space R 3 by c# = (1, Ii, Ii, aj), i , j  = 1, 2, 3 and points ck, k = 0 , . . . ,  5 by 

3 

C t = ~ ( l i a o ( i ) , - J i a o ( i l ,  J iba l i ) ) ,  o = o k 
i=l 

As local coordinates of a point Q we take the values wi = Wi(Q). Le t  w = (wl, w2, w3). Then {w} = 
~ and 

3 
P(X,w) = XtX.~(Xw - L(~,)), L = kc t -(XtX3) -t Y ~cia{i ) 

i--t 

for any o = Ok (k = 0 . . . .  ,5).  Since Zx is a level surface L(X) of the function ~LW, it follows by (1.3) 
that ~F(X) = L(X). 

We carry over the notation Of or to the projective curve of third order {X:Xf = L(X)}. 
Then Xw coincides with Of when f = w. The set of points f such that the curve Of has a singularity is 

defined by the property that the discriminant of the curve vanishes, that is, the set isan algebraic surface 
of order 12 [8], which we denote by A. The set X lies on A (see the remark at the end of Section 2). 

To describe Zx we will find the critical points of the sheaves XW. Omitting the calculations, we present 
the results for the case a -1 < r < a, a = (al - az):(a2 -a3) ,  r -- (3"2 -Yl):(Y3 -./2). It is sufficient to take 
the values of X in the plane {X3 = 1 }, which is shown in Fig. 1 divided into domains by the straight lines 
/t~= (X: Xc# = 0}. The points of intersection of the straight lines//0(,3 for o = Ok are indicated by 

e digits k = 0 . . . .  ,5.  For X in the domains A ~  A1, A2, 16 critical points of XW exist, defined by the 
equations 

Fig. 1. 
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a2  (~') = (1 i - ti+ n )( t i - li_ ~ )(aj - aj+! )(aj - aj_ n )(~.1~,3)2 

i , j  (rood 3), and differing in the signs of ~j, we give them a common notation Q~. The other critical 
points for ~. E lq Jill out curves C # =  {Q : aij = 4"1}. Among them are 24 equilibrium points, where 
o~o(i) = 4" 1, w = c~: for o = Ok, dW/= 0 (i = 1, 2, 3; k = 0 . . . . .  5). 

The form of Zx ~li be deducted from the modifications of the level sets ~.W as the level values pass 
through the critical values [9]• Since the first condition (1.2) is identically valid for O = (~.1Z3) -~, the set 
X~ is the part of ZX on which sign P~ = -sign ~qg3. On Z~ the sign of P~ = 7273 (for 71 = 0) is found 
from the signature of ZF in the domains separated by Zx. We deduce that for ~. in the unlabellcd domains 
in Fig. 1 either Z;~ orX~. is empty. For ~. ~ A~ A1, A2, the setXx is formed by four of the eight components 
of Z~ which are dtffeomorphic to spheres punctured at four points and glued to Qx at the punctures. 
For the other labelled domains, the sets Xx are identical with Z~, are diffeomorphic to a pair of tori 
and, as ~, passes through I#, are modified according to C#. Thus, the labelled domains in Fig. 1 are DBDs; 
the meaning of the, superscript plus or minus was indicated previously. The pieces of the boundary A~ 
are denoted by Oij]ki~ = 1# ~ OA2. 

The coordinates o~ of the velocity of a steady motion along Xx satisfy the conditions 

oh : ~z : m3 = u~ ~ : u~ t : u~ n (4.1) 

Ul =(~L I + li~,.2 )U flt -- li~.3~ jk,  i c j ;~ k # i 

(In the equation ~.]F'co = 0, multiply the ith row by ujk, i ;~ j ;e k ;~ i, single out the term diag(ui) in the 
new matrix and note that ups/does not depend on i.) The three uis vanish simultaneously only at points 
Q;~ where co = 0, o:r when ~, ~ l# on the curves (7# along which the steady motions occur with arbitrary 
initial ~ and with q~ = 0 (] ;~ i); these motions correspond to the values ~,1 = 0 or Z3 = 0. 

The values of the integrals on motions along C.- form nine rays T/- parallel to c#, each containing two 
• ° • [ J  . 

points ck, j = ffk(/)~, and ending m one of them. lg£ese rays (parts of the self-intersection edges of the 
surface A) are shovm schematically in Fig. 2; they form the one-dimensional skeleton of the set E. The 
two-dimensional components of Y~ are diffeomorphic images of the domains A2 in Fig. 1 under the 
map f(~.); denote the imagef(A2) by Z2 with the same indices. These images are glued to the skeleton 
by continuation off(~.) to the boundary of the DBD. When that is done the vertices labelled k go into 
Ck, points with kl = 0, oo go to infinity, ~/jA= (i ~ j) are mapped monotonically into T/j and ~A= doubly 
into Tu: ~//Aeu onto [ei, ~), az~A~ onto [c4, e2] and ~uA3 onto [Co, di]. T h e s e  segments of the rays Tu will 
be called inner edges of the cells ZA= glued to them (note that there are no two-dimensional cells glued 
to the segments (di, el) C Tu). Thus, the totality of DBDs in Fig. 1 is an "unfolded" image of the 
bifurcation surface, which demonstrates the relative positions of its parts. 

The partition of the domain fl by the surface g consists, besides f ~  of four infinite domains D,/j (i, 
j -- 1, 3), one of wlhich contains the finite domain f~l. To avoid graphical difficulties, we will present 
separate schematic depictions of the parts of g bounding these domains (for the relationship chosen 
among li, ai). 

Figure 2 shows the boundary of f~0; the "invisible" faces El and 7-o are not shown. Figures 3 and 4 
show the boundaries of f~j, i ;e j and f~u; here k = i + l(mod 3), the upper index of the plus and minus 

rzs ~ ~, 

c, 

T2g_ 

c, 

Fig. 2. Fig. 3. 
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rz~ 

c ,z c, ae 

Fig. 4. Fig. 5. 

superscripts in the symbol Z~ is taken when i = 1, the inner edges [Co, di] of the faces ~a2, 7-o.3 and 7-a 
are not shown. Figure 5 represents the closed surface 7-,3 with inner edges [Co, di] it bounds the domain 
t~l, which is contained in fl13. By Proposition 5, the pieces Z~, ];~j and Z~, ~ij form the upper and lower 
parts of ~ ,  respectively, relative to the fl axis. 

Since 3LOk = f(k), condition (3.1) becomes 

f -  w - x(f(L) - w), kw = L(k) (4.2) 

with an indefinite multiplier x, which means that the points f, w,f(Z,) are coUinear. Multiplying the first 
equality of (4.2) by t we see, by virtue of the second equality and the identity 29e(k) = L (which follows 
from the homogeneity of L(k)), that E ~ -  w) = 0, that is, the second equality in (4.2) can be replaced 
by 79 e = L. Hence it follows that the cone &f~ is half 0~ ~> wi) of the cone Kw dual to the set Xw, and 
the generalized boundary &~f is the intersection with D.0 of the half (wi .~) of the cone K~ dual to Of 
(el. the remark at the end of Section 2). 

Consider the domains A~, A~, A~ = {E:__.(~- L) ~ 0} in the plane {13 = 1}; they are bounded by 
the curve Of and the 12 axis. Since lw = L on Xw, we can rewrite (3.2) as 

M[= {w: X, i, c A~} (4.3) 

Note that condition (4.2), which expresses the membership relation w ~ 5Mf, means thatXw is tangent 
to O/~ while the membership relation w ~ ~Mf means, by (4.3), that Y~ is tangent to ~A~. 

Since the problem is integrable, the description of the integral surfaces reduces to indicating the 
number of component tori in each. To that end, we establish the form of Mf and the nature of the 
projection If-~ Mf for near-critical values off. 

All the curves Of, have three common points at ~1 = 0, Lz = -ai and three at infinity on the directions 
l#. The form of Of may be established a t f  = Ck (a triple of straight lines lib(i), ~ = ak), a t f e  T# (a straight 
line lr and a hyperbola); by the Remark in Section 2, their form for other fs follows by continuity. Let 
f.  = ~(I.), Z, ~ A~I. Denote the corresponding sets by M., O., Z,. Let file in ~11 near f,. Figure 6 shows 

L. 

Fig. 6. 



Dtnal parametrization of a mechanical system with quadratic integrals 369 

segments of the curvesX~, Oj and O. (dashed) near X.mthe nodes of O., and the domains A-f, A-* lie 
between the upper and lower branches of O/~ O.. 

It is clear that a necessary condition for X~ C A-. is that ~ ¢ X-w, that is, w ~ Z., and a necessary 
condition forX~ C A~ is that the curve Xw pass near k., so that Mflies near Z.. Since Z. C M., it follows 
that M. = Z.  and, by (4.3), the relation ~. e X~ is a sufficient condition forX~w C A ~  By continuity, 
taking into consideration the possible nature of the intersection of the algebraic curves X~ and Otwith 
six common points~ one can show that a sufficient condition forX~w c A-+f is that the branchXw- should 
pass between the branches Of in Fig. 6; their points of tangency at w ~ 8Mr form sets O'f and 0 '  2 on 
the upper and lower branches, respectively, of Of near k.. The other branches of the curve X~ do not 
pass through A~I; therefore, first, OMf = 0Mr, and second, if w ~ M/~ the quantity Zw - L(X) is non- 
positive on O'f and non-negative on O~Consequently, Mf lies at the intersection of the following domains 

• H • - • t~' + to "," .4.  ~ • • f2/and D~ :f~¢ = fir2 x, k e Of; O~ = nf~ x, X ~ O~; f2x = {w:_(Xw - L )  ~ 0}. Smee the boundanes 
of these domains zxe defined by the same condition of the tangeney of X,, with Of as OMf, it follows 
that g f  = t'~' f3 f~7 and OMf = Of~'e t..J t'~'. 

Shifting each point of Z.  along a vector field transverse to Z. to a point with coordinates wi such that 
Xw is tangent to Of, we obtain a continuous deformation of Z. into OD~ and 3f~ 7. Thus, M¢ has two 
components, each ]bounded by a pair of toil and contractible to a component of the surface Z.. Each 
boundary point of Mf is the image under projection from If of two antipodal vectors of the form (4.1), 
and each interior p3int is similarly the image of two antipodal pairs of nearby vectors. Hence If consists 
of four three-dimensional toil, each pair of which projects into two components of a DPM. 

This is the form of I£ for f~33, f~13, f~31- Proceeding in analogous fashion for f~l, one can deduce that 
the integral surfaces consist of eight toil: four that project onto a DPM, as described above, and two 
more pairs that project onto subsets of components of a DPM of the same form. For D.o, the four toil 
comprising If projeq~, one each, into the four components of the DPM bounding each pair of surfaces 
homeomorphic to a sphere. 
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